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Lemon Encodes an Unusual Receptor Protein-
yrosine Kinase Expressed during Gametogenesis

n Hydra

Michael A. Miller1 and Robert E. Steele
Department of Biological Chemistry and the Developmental Biology Center,
University of California at Irvine, Irvine, California 92697

In a screen for receptor protein-tyrosine kinase (RTK) genes expressed during gametogenesis in the cnidarian Hydra
vulgaris, we isolated a cDNA encoding Lemon, an RTK with unusual features. Lemon is orthologous to Drosophila Dtrk,
chicken Klg, and human colon carcinoma kinase-4. These genes constitute an RTK class characterized by a conserved
transmembrane sequence, the presence of extracellular immunoglobulin-like repeats, and the absence of the DFG motif in
the kinase domain. We provide evidence that Lemon is a component of an unusual RTK signal transduction mechanism that

ay involve transmembrane domain-mediated interactions and may not be dependent on its own catalytic activity. Lemon
ranscription is dynamically regulated in interstitial cells during asexual budding and gametogenesis. Transcriptional
p-regulation occurs early in spermatogenesis and oogenesis concurrent with the local accumulation of interstitial cells in
he body column of sexual polyps. © 2000 Academic Press
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INTRODUCTION

Extensive morphological and mechanistic diversity exists
in the strategies that animals use to generate mature
gametes. Because of this diversity, the extent to which
molecular gametogenic mechanisms are conserved among
multicellular animals is unclear. In order to address this
issue, we have been studying gametogenesis in Hydra
vulgaris, a member of the early-diverging metazoan phylum
Cnidaria. The identification and characterization of mol-
ecules and molecular interactions that are involved in this
elementary system should provide insight into the molecu-
lar mechanisms that are fundamental to metazoan gameto-
genesis.

Gametogenesis in Hydra is simple. Sperm- and egg-
restricted stem cells derive from interstitial cells located
beneath the ectodermal epithelium in the polyp body col-
umn (Littlefield, 1985, 1991; Nishimiya-Fujisawa and Sug-
iyama, 1993). In response to environmental cues that initi-
ate gametogenesis, interstitial cells aggregate and undergo a
period of rapid proliferation. Gamete differentiation ensues
as the surrounding epithelium develops into a temporary

1 Present address: Department of Cell Biology, Vanderbilt Uni-

versity School of Medicine, Nashville, TN 37232-2175.
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onad that is used to transfer the gamete(s) to the external
edium.
RTKs are membrane-spanning proteins that catalyze in-

racellular tyrosine phosphorylation reactions in response
o extracellular signals (reviewed in van der Geer et al.,
994). These molecular switches are important mediators
f developmental signals in many, and perhaps all, animal
hyla (Steele et al., 1996). For instance, in mice the Kit RTK

and its ligand are essential for germ cell survival, prolifera-
tion, migration, and differentiation (reviewed in Bachvarova
et al., 1993; Russell, 1979). Thus, RTKs are candidates for
molecules involved in regulating gametogenesis in Hydra.
Using a polymerase chain reaction-based screen, we iso-
lated Lemon, a Hydra RTK gene with unusual features. We
show that Lemon is orthologous to chicken Klg (Chou and
Hayman, 1991), human colon carcinoma kinase-4 (CCK-4)
(Mossie et al., 1995), and Drosophila Dtrk (Pulido et al.,
1992). These proteins constitute a novel RTK class that is
characterized by a conserved transmembrane sequence, the
presence of extracellular immunoglobulin-like domains,
and the absence of the highly conserved DFG motif in the
kinase domain. The aspartate of this motif has been shown
to be essential for phosphotransferase activity (Moran et al.,
1988; Taylor et al., 1993). We have obtained results which

are consistent with the hypothesis that Lemon is part of an

0012-1606/00 $35.00
Copyright © 2000 by Academic Press

All rights of reproduction in any form reserved.



p
a
a
u
H
a
1
a
r
f
v
l
o
c
S

S
m
f
p
k
r
m
w
a

f
P

p
R
i
1

287Expression of Lemon during Gametogenesis in Hydra
unusual RTK signal transduction mechanism that does not
involve kinase activity on the part of Lemon and may
involve transmembrane domain-mediated interactions,
possibly with another RTK. Additionally, we argue that this
mechanism has been conserved during animal evolution.
An examination of the Lemon expression pattern in Hydra
indicates that this gene has a role in both spermatogenesis
and oogenesis.

MATERIALS AND METHODS

Hydra Culture

H. vulgaris polyps were cultured using standard methods
(Shimizu and Bode, 1995). Analyses of sexual polyps were carried
out using a female strain of H. vulgaris, named AEP, which was
derived from the PA1 strain isolated by Dr. Carolyn Teragawa
(Martin et al., 1997). Males were derived from this strain, which is
unstably gonochoristic.

Isolation of cDNA Clones

We used a polymerase chain reaction (PCR) method for the
amplification of protein-tyrosine kinase gene fragments (Wilks,
1989; Wilks et al., 1989). The template for amplification was cDNA
synthesized from RNA extracted from interstitial cells purified by
centrifugal elutriation (Greber et al., 1992), which was generously
rovided by Martin Greber (University of Munich). The specific
mplification conditions have been described previously (Chan et
l., 1994). The resulting PCR products were cloned and compared
sing T-tracking to eliminate fragments from previously identified
ydra protein-tyrosine kinase genes. Novel clones were sequenced

nd analyzed using the BLAST server at NCBI (Altschul et al.,
990; Gish and States, 1993). The 39 RACE procedure (Frohman et
l., 1988) was used to amplify the 39 end of the Lemon cDNA. The
esulting fragment was used to isolate a full-length cDNA clone
rom a Lambda ZAP II cDNA library prepared from adult H.
ulgaris polyps (Sarras et al., 1994). The methods used for cDNA
ibrary plating and screening were essentially as described previ-
usly (Bosch et al., 1989; Chan et al., 1994). Inserts from the cDNA
lones were recovered in plasmids by in vivo excision (Short and
orge, 1992).

DNA and Amino Acid Sequence Analysis

The sequence of the cloned full-length Lemon cDNA was
obtained using the Sequenase kit (US Biochemical) and exonucle-
ase III deletions (Henikoff, 1987). Sequence data were compiled and
analyzed using DNA Strider (Marck, 1988) and sequence compari-
sons were performed using the BLAST server at the National
Center for Biological Information (Altschul et al., 1990; Gish and
tates, 1993). Phylogenetic analysis was performed using maxi-
um parsimony methods. Kinase domain amino acid sequences

rom a diverse sampling of RTKs were used in the analysis. The
resence or absence of extracellular immunoglobulin-like domains,
ringle domains, EGF-like repeats, fibronectin III domains, leucine-
ich motifs, and discoidin-1-like domains was also used in the
atrix. The heuristic search option of PAUP* 3.1 (Swofford, 1993)
as used for tree construction, with 200 random order taxon
ddition replicates and tree bisection and reconnection branch

Copyright © 2000 by Academic Press. All right
swapping. Human Src, a non-receptor protein-tyrosine kinase, was
used as the outgroup. The “protpars” matrix of PAUP* 3.1 was
used to weigh amino acid substitutions. To obtain bootstrap
values, 100 bootstrap replicates were performed using simple taxon
addition with tree bisection and reconnection branch swapping.
Homology models of protein structures were created using SWISS-
MODEL (Guex and Peitsch, 1997; Peitsch, 1995), available through
the ExPASy WWW molecular biology server from the Swiss Insti-
tute of Bioinformatics (Appel et al., 1994). Model evaluations using
the Profiles 3-D program (Luthy et al., 1992) and Prosa (Sippl, 1993)
were provided with the returned model. Model evaluations using
Whatif V4.99 (Hooft et al., 1996; Rodriguez et al., 1998) and
Procheck V3.5 (Laskowski et al., 1993; Morris et al., 1992) were
performed using the Biotech Validation Suite for Protein Structures
at http://biotech.embl-heidelberg.de:8400.

In Situ Hybridization
In situ hybridization with whole-mount preparations was per-

formed as previously described (Martı́nez et al., 1997). Digoxigenin-
labeled sense and antisense RNA probes were generated by in vitro
transcription of a fragment from the region of the Lemon cDNA
encoding the extracellular domain. Samples were photographed
with Nomarski optics after permanent mounting in Euparal (Asco
Laboratories). For the identification of individual interstitial cells
expressing Lemon, testes- or egg-forming regions were dissected
and dissociated into individual cells using the maceration tech-
nique (David, 1973). Cells were then fixed in 4% paraformaldehyde
for 30 min and spread on subbed glass slides. In situ hybridization
to the dispersed cells was performed as described by Kurz et al.
(1991) except that solutions and detection methods were identical
to those in the whole-mount in situ hybridization procedure of
Martı́nez et al. (1997). Hybridization was carried out at 55°C for
36 h in a sealed chamber surrounding the cells. Posthybridization
washes were done at 55°C in 23 SSC plus 0.1% CHAPS four times
or 30 min each in a Coplin jar. Cells were then mounted in
BS:glycerol (9:1) and photographed with Nomarski optics.

RNA Hybridization Analysis
Poly(A)1 RNA from adult H. vulgaris polyps was generously

rovided by Dr. Andy Shenk (UC Irvine). Electrophoresis of the
NA, transfer to nylon membrane, hybridization, and posthybrid-

zation washes were done as previously described (Shenk et al.,
993).

Bromodeoxyuridine Labeling
To identify cells that were in S phase of the cell cycle, polyps

were injected in the gastric cavity with 5.0 mM 5-bromo-29-
deoxyuridine (BrdU) from Sigma (Plickert and Kroiher, 1988). One
hour later, animals were relaxed in 2% urethane and fixed in 100%
ethanol. Samples were incubated in 2 N HCl for 30 min, rinsed in
PBS four times, and incubated with an anti-BrdU antibody (Becton–
Dickinson). A fluorescein-conjugated secondary antibody was used
to detect the bound anti-BrdU antibody. Preparations were
mounted in 9:1 PBS:glycerol and photographed.

Elimination of Interstitial Cells by Hydroxyurea
Treatment

The number of interstitial cells was reduced by treating polyps

with 10 mM hydroxyurea for either 1 or 3 days (Sacks and Davis,

s of reproduction in any form reserved.
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1979). After a 2-day recovery period, several polyps were macerated
(David, 1973) and the ratio of large interstitial cells to epithelial
cells was determined.

Protein Expression in Yeast

Fragments of genes of interest were amplified using PCR with
gene-specific primers flanked by the appropriate restriction en-
zyme cleavage sites for cloning. All site-directed mutations were
created using standard PCR strategies (Higuchi et al., 1988; Vallette
et al., 1989) and verified by sequencing. The amplified fragments
were isolated from the reaction mixtures with QIAEX particles
(Qiagen), cleaved with appropriate restriction enzymes, and puri-
fied by agarose gel electrophoresis. Fragments were ligated into the
galactose-inducible yeast expression vector pRS316-GAL1 (Liu et
al., 1992). Strain W303 of Saccharomyces cerevisiae was trans-
formed with plasmid DNA using the lithium acetate method.
Transformants were selected on minimal medium lacking uracil.
For expression of proteins, plasmid-containing yeast cells were
grown at 30°C in uracil-minus minimal medium plus glucose
overnight and then diluted in uracil-minus minimal medium plus
galactose and grown for an additional 12 to 20 h. Cells were
harvested by centrifugation and proteins were extracted (Yaffe and
Schatz, 1984). Protein concentrations were determined using the
BCA Protein Assay Reagent Kit (Pierce). Equal amounts of protein
were fractionated by SDS–PAGE and transferred to an Immobilon-P
filter (Millipore) using a Bio-Rad Trans-Blot SD semidry electro-
phoretic transfer cell. For the anti-phosphotyrosine blots, the filter
was blocked in 5% BSA for 1 h at room temperature and incubated
with 4G10 anti-phosphotyrosine monoclonal antibody (Upstate
Biotechnology) diluted 1:13,000 in Tris-buffered saline plus 0.05%
Tween 20 (TBST). For the anti-myc blots, the filter was blocked in
5% nonfat dry milk for 1 h and incubated with the 9E10 anti-myc
monoclonal antibody (Santa Cruz Biotechnology) diluted 1:200 in
TBST plus 5% nonfat dry milk. The filter was then washed at room
temperature five times for 5 min each in TBST. Following incuba-
tion for 1 h at room temperature with a horseradish peroxidase-
conjugated goat anti-mouse IgG antibody (Transduction Laborato-
ries) diluted 1:25,000 in TBST, the filter was washed at room
temperature four times for 5 min each in TBST. Bound antibody
was detected with the SuperSignal chemiluminescent substrate for
Western blotting (Pierce).

RESULTS

Identification and Cloning of the Lemon Gene

We used a method originally developed by Wilks et al.
(1989) to isolate genes encoding RTKs expressed in intersti-
tial cells. The kinase domain amino acid sequence encoded
by one cloned fragment (Lemon) showed significant se-
quence identity to the kinase domain of the chicken Klg
gene product (Chou and Hayman, 1991), the human CCK-4
gene product (Mossie et al., 1995), and the Drosophila Dtrk
gene product (Pulido et al., 1992). A 3.4-kb cDNA clone for
Lemon was found to contain an open reading frame of 2550
bp that encodes a predicted protein product of 848 amino
acids (Fig. 1A). A potential initiator methionine is followed
by a stretch of hydrophobic amino acids that is character-

istic of a signal peptide sequence. The predicted protein

Copyright © 2000 by Academic Press. All right
contains five immunoglobulin-like domains followed by a
transmembrane sequence and a protein-tyrosine kinase
catalytic domain. Hybridization of a fragment from one of
the Lemon cDNA clones to poly(A)1 RNA from nonsexual
adult polyps detected a single 3.4-kb RNA species (data not
shown), the same size as the cDNA clone which was
sequenced. Taken together, these results indicate that we
have cloned the entire coding region of the Lemon gene and
that the gene encodes a receptor protein-tyrosine kinase.

Lemon Encodes an Orthologue of Dtrk, Klg, and
CCK-4

The Lemon kinase domain is unusual because a highly

FIG. 1. (A) Predicted amino acid sequence of the Lemon protein.
The predicted transmembrane sequence is indicated by single
underlining. Bold-faced residues indicate amino acid positions
identified by Hanks and Quinn (1991) that are highly conserved
among protein-tyrosine kinases. Bold-faced residues that are dou-
bly underlined are not conserved in Lemon. (B) Amino acid se-
quences replacing the DFG motif in the kinase domain of Lemon
and its orthologues. (C) Alignment of the transmembrane se-
quences of Lemon and its orthologues. The transmembrane se-
quences are underlined. Residues present in at least three of the
four sequences are shown on the consensus line.
conserved sequence motif that has been shown to be

s of reproduction in any form reserved.
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289Expression of Lemon during Gametogenesis in Hydra
essential for catalytic activity is altered. Three other RTKs
(Klg, Dtrk, and CCK-4) possess similar alterations (Fig. 1B)
and a BLAST search with the Lemon kinase domain se-
quence gave results which ranked these three proteins
highest in amino acid sequence identity scores. In order to
determine the phylogenetic relationship of these four un-

FIG. 2. Results from maximum parsimony phylogenetic analysis
core of 80 or higher indicates very strong support for that particul

Materials and Methods for details of the analysis. DTRK (S19247
(BAA21836) are from Drosophila melanogaster; INSRH (P06213),

DR1 (Q08345), DDR2 (AAA18019), AXL (P30530), PDGFRb (P0
GFR (P00533), RET (P07949), and CCK-4 (AAA87565) are from

A39712) and CKIT (Q08156) are from Gallus gallus; NykRYK (Q01
nd LEMON (AAB03389) are from Hydra vulgaris. The Entrez acc
usual proteins within the RTK family, we performed a

Copyright © 2000 by Academic Press. All right
maximum parsimony analysis using kinase domain amino
acid sequences and the presence or absence of several
characteristic RTK features (Hanks and Quinn, 1991). The
results of this analysis (Fig. 2) strongly support the hypoth-
esis that Lemon, Klg, Dtrk, and CCK-4 are orthologues.

Lemon, Klg, CCK-4, and Dtrk thus constitute a class of

elected RTKs. Bootstrap values are shown above the branches. A
anch. Lemon and its orthologues are indicated by the bracket. See
RK (AAD02091), DROR (A48289), DFGFR (Q09147), and DRET
H (P04629), TRKCH (Q16288), SRC (P00523), ROR1H (A45082),

), FLT1 (P17948), FLT4 (P35916), FGFR4 (P22455), FLG (P11362),
o sapiens; PERK (AAA49285) is from Torpedo californica; KLG

and TIE (Q06806) are from Mus musculus; and HTK54 (AAA65223)
n numbers for the protein sequences are in parentheses.
of s
ar br
), DN
TRKA
9619
Hom

887)
RTKs characterized by the alteration of the DFG motif
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290 Miller and Steele
within the kinase domain and the presence of extracellular
immunoglobulin-like repeats. A third feature of this class,
which was not used in our phylogenetic analysis, is a highly
conserved transmembrane sequence. The Lemon trans-
membrane sequence is 55% identical to the transmem-
brane sequences of Klg and CCK-4 (Fig. 1C). This degree of
transmembrane sequence conservation across such a large
evolutionary distance is apparently unique among known
RTKs.

Lemon Does Not Phosphorylate Itself or Yeast
Proteins in Vivo

Mutagenesis studies have demonstrated that the DFG
motif is essential for kinase activity (Katso et al., 1999;

oran et al., 1988; Taylor et al., 1993). Lemon, Dtrk, Klg,
nd CCK-4 have alterations in this DFG motif (Fig. 1B). To
est the Lemon catalytic domain for protein-tyrosine kinase
ctivity, we took advantage of the fact that the yeast S.
erevisiae contains a very low level of proteins phosphory-
ated on tyrosines and no canonical protein-tyrosine ki-
ases (Hunter and Plowman, 1997). The Lemon kinase
omain was cloned into a galactose-inducible vector for
rotein expression in yeast. In addition to this construct,
wo positive control constructs and one negative control
onstruct (vector alone) were tested. Our positive control
onstructs encoded the catalytic domain of Sweet Tooth, a
ydra RTK possessing a typical catalytic domain (Reidling

t al., 2000), and Xenopus Src (Steele et al., 1989). Trans-
ormed yeast cells were grown in the presence of glucose or
alactose for 20 h. Total protein extracts were fractionated
y SDS–PAGE, transferred to a membrane, and probed with
n anti-phosphotyrosine antibody. As shown in Fig. 3,
rotein extracts from strains containing Sweet Tooth and
rc grown in galactose possess large numbers of proteins
hosphorylated on tyrosine. In contrast, an extract from
east cells producing the Lemon kinase domain contained
he same pattern of tyrosine-phosphorylated proteins as a
egative control extract. Synthesis of the Lemon protein in
he yeast cells was verified by attaching a myc epitope tag
o the carboxyl terminus (Fig. 3). These results demonstrate
hat the Lemon catalytic domain is not functional in yeast
nder conditions under which catalytic domains from other
iverse protein-tyrosine kinases are functional. We cannot
ule out the possibility that the Lemon kinase domain has
n unusual substrate specificity, such that it does not
ecognize any yeast protein. However, the fact that it does
ot even autophosphorylate in yeast cells argues that it is
atalytically inactive.
Ryk, an RTK which is not closely related to Lemon, also

acks kinase activity and contains the sequence DNA in
lace of the DFG motif (Hovens et al., 1992; Katso et al.,
999). Upon replacement of the DNA sequence with DFG
y site-directed mutagenesis, Ryk acquires kinase activity
Katso et al., 1999). We used site-directed mutagenesis to
hange the FLS sequence present in the Lemon kinase

omain back to the ancestral sequence DFG in order to see t

Copyright © 2000 by Academic Press. All right
f we could restore Lemon kinase activity. When this
utated kinase domain was expressed in yeast, no increase

n the level of tyrosine-phosphorylated proteins was ob-
erved relative to negative controls (Fig. 3, lane 12). This
esult raises the possibility that some aspect of the struc-
ure of the Lemon kinase domain deviates from known
rotein-tyrosine kinase domain structures despite the fact
hat 32 of the 40 most conserved kinase domain amino
cids (Hanks et al., 1988) are present (Fig. 1A). However,
omology modeling of the Lemon kinase domain and
ubsequent systematic comparisons of the model’s confor-
ational, energetic, environmental, and packing properties
ith the corresponding properties of known RTK kinase
omain structures (data not shown) indicate that the
emon kinase domain is not likely to deviate significantly
n structure from other RTKs. Similar results were obtained
hen homology models of Klg and CCK-4 were created and

valuated (data not shown). These results indicate that the
tructure of the kinase domain of Lemon family RTKs has
een conserved over the course of most of metazoan evolu-
ion despite the presumed absence of catalytic activity

FIG. 3. Detection of phosphotyrosine-containing proteins in
yeast cells expressing various Hydra protein-tyrosine kinase cata-
lytic domains. S. cerevisiae cells were transformed with various
onstructs under the control of a galactose-inducible promoter (see
aterials and Methods) and grown in the presence of glucose or

alactose. Extracts containing equal amounts of protein were
ractionated using SDS–PAGE, blotted, and probed with the indi-
ated antibodies. (1) Vector alone, glucose; (2) vector alone, galac-
ose; (3) Xenopus Src2, glucose; (4) Xenopus Src2, galactose; (5)
weet Tooth kinase domain, glucose; (6) Sweet Tooth kinase
omain, galactose; (7) Lemon kinase domain, glucose; (8) Lemon
inase domain, galactose; (9) Lemon kinase domain-myc, glucose;

10) Lemon kinase domain-myc, galactose; (11) Lemon kinase
omain FLS 3 DFG-myc, glucose; (12) Lemon kinase domain
LS 3 DFG-myc, galactose.
hroughout that period.
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291Expression of Lemon during Gametogenesis in Hydra
The Lemon Transmembrane Sequence Affects
Protein Stability

The Lemon transmembrane sequence has been highly
conserved during evolution, suggesting that this sequence
is important for proper protein function (Fig. 1C). Although
this degree of transmembrane sequence conservation is
apparently unique among RTKs, it is common in
membrane-spanning multisubunit protein complexes and
in many integral membrane proteins which cross the bi-
layer more than once (reviewed in Harrison, 1996). Specific
interactions between transmembrane a-helices are impor-
tant for the assembly of receptor complexes such as the
T-cell antigen receptor, the B-cell receptor, CD8, FcgRI,
glycophorin, and MHC class II molecules (Blum et al., 1993;

onifacino et al., 1990a,b; Cosson and Bonifacino, 1992;
arrison et al., 1995; Hennecke and Cosson, 1993; MacK-

enzie et al., 1997).
To investigate possible roles of the Lemon transmem-

brane sequence, myc epitope-tagged recombinant proteins
derived from the Lemon gene or from two other Hydra
RTKs were produced in yeast under control of the GAL
promoter. The two other RTKs were HTK7, the Hydra
homologue of the vertebrate insulin receptor (Steele et al.,
1996), and HTK54 (Chen and Steele, unpublished results), a
member of the PDGF receptor family (Fig. 2). The protein
produced by each construct possessed the Lemon signal
sequence. In addition, the Lemon construct possessed half
of the Lemon extracellular domain and the Lemon trans-
membrane and kinase domains. The HTK7 and HTK54
constructs contained their respective transmembrane and
kinase domains but lacked all but the juxtamembrane
portion of the extracellular domain. Yeast containing the
various constructs were induced with galactose for 14 h.
Identical amounts of total protein were fractionated by
SDS–PAGE, transferred to a PVDF filter, and probed with an
anti-myc antibody. The level of protein expression from the
construct containing all Lemon sequences was dramatically
reduced relative to the levels of protein from the HTK7 and
HTK54 constructs (Fig. 4). To determine if the Lemon
transmembrane sequence played a role in this reduction in
protein level, we expressed two transmembrane sequence
chimeras. In the first chimera, the transmembrane region
(transmembrane sequence and 10 amino acids on each side)
of Lemon was replaced with the equivalent region from
HTK7. In the second chimera, the transmembrane region of
HTK54 was replaced with the equivalent region from
Lemon. To examine the stability of these chimeric proteins,
we performed a glucose repression experiment. Trans-
formed yeast strains were grown in 2% galactose for 14 h;
3% glucose was then added to repress the GAL promoter
and block further RTK synthesis. Samples were taken at
various times following glucose repression and analyzed by
immunoblotting. Figure 4 shows that proteins containing
the Lemon transmembrane sequence exhibit a reduction in
protein stability relative to controls. Replacing the Lemon

transmembrane region with the HTK7 transmembrane re- e

Copyright © 2000 by Academic Press. All right
gion in this construct resulted in an increase in the protein
level (Fig. 4C). Taken together, these results indicate that
the presence of the Lemon transmembrane sequence de-
creases protein stability.

The Lemon Gene Is Dynamically Expressed in
Interstitial Cells

The expression pattern of the Lemon gene was examined
using Northern analysis and in situ hybridizations to whole
Hydra polyps and to macerated cell preparations of testes
and ovaries. In situ hybridizations to macerated cell prepa-
rations of body column or bud tissue could not be resolved
due to a poor signal-to-background ratio. The Lemon ex-
ression pattern was found to be dynamic and complex,
ith Lemon RNA being detected in two classes of cells,

entacle endodermal cells (Fig. 5O) and interstitial cells.
orthern analysis, which was performed using mRNA

solated from dissociated cell fractions separated by cen-
rifugal elutriation (generously provided by Drs. Thomas
olstein and Bert Hobmeyer, University of Darmstadt),

lso supported this localization (data not shown). Lemon
RNA is present at low levels in interstitial cells in

onsexual, nonbudding polyps (Fig. 5A) and at higher levels
n these cells during budding (Figs. 5B–5D), spermatogen-

FIG. 4. The Lemon transmembrane sequence contains a destabi-
izing element. Yeast strains containing myc-tagged Lemon trans-

membrane sequence chimeras were grown in medium containing
2% galactose for 14 h. 3% glucose was then added and samples
were taken after 0, 2, and 4 h. Protein extracts from each sample
were fractionated by SDS–PAGE, transferred to a filter, and probed
with the 9E10 anti-myc monoclonal antibody. (A) HTK54; (B)
HTK54 possessing the Lemon transmembrane sequence; (C)
Lemon possessing the HTK7 transmembrane sequence; (D) Lemon
with its own transmembrane sequence.
sis, and oogenesis (Figs. 5E–5N).

s of reproduction in any form reserved.
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In Hydra, interstitial cells are located primarily between
ectodermal epithelial cells; hence, it can be difficult to
distinguish in situ hybridization to ectodermal epithelial
cells from hybridization to interstitial cells. To distinguish
between these two possibilities, in situ hybridizations to

FIG. 5. Whole-mount in situ hybridization analysis of Lemon gen
bud (B), a stage 3 bud (C), and a stage 7 bud (D). Bud stages are acc
with numerous testes is shown in (E). Close-up views of developin
Lemon expression have accumulated and mark the future site
accumulation (G and H) and becomes confined to the basal perip
up-regulated in large patches of aggregating interstitial cells in the f
of the body column is stained (L). As the nurse cells undergo a
dissipates (M). After the oocyte is externalized, Lemon expression
close-up view of Lemon expression in tentacles. BrdU-pulse labelin
Lemon expression pattern.
normal animals can be compared to those done with ani-

Copyright © 2000 by Academic Press. All right
mals that have been treated with hydroxyurea (HU) to
selectively eliminate the interstitial cells (Bode et al., 1976).
Treating polyps for 3 days is usually sufficient to reduce the
interstitial cell population to about 5% of its normal value.
In order to eliminate differentiating interstitial cells that do

pression. (A) A nonsexual adult polyp. Close-up views of a stage 2
g to Otto and Campbell (1977). The body column of a male polyp
es are shown in F–I. In (F), interstitial cells that have up-regulated
e testis. Lemon expression then fades from the center of the
of the mature testis (I). During oogenesis, Lemon expression is

e body column (J). These patches of expression grow (K) until much
sis and become phagocytosed by the oocyte, Lemon expression
sent from the body column where the egg field existed (N). (O) A
mature testis shows a ring of cells in S phase (P) that matches the
e ex
ordin
g test
of th
hery

emal
popto
is ab
g of a
not cycle or cycle slowly, one must remove the proliferating
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294 Miller and Steele
stem cells first, using HU, and then wait several days to
weeks for the differentiation products to be lost by displace-
ment from the extremities of the polyp. Since there are no
stem cells remaining, the entire interstitial cell population
will be lost.

Nonsexual budding, nonbudding sexual male, and sexual
female polyps were treated with HU for 1 or 3 days, allowed
to recover for 2 days, and then analyzed for Lemon mRNA
expression using whole-mount in situ hybridization (Fig. 6).

he effectiveness of the HU treatment was confirmed by
ounting cells from macerated polyps to determine the
nterstitial cell to epithelial cell ratio. As interstitial cells
ere progressively removed by epithelial cell phagocytosis

n HU-treated animals, Lemon mRNA expression was lost.
n most cases, 3 days of HU treatment eliminated all but
he expression within tentacle endodermal cells (compare
igs. 6A and 6B, 6C and 6D). The interstitial cells with
levated levels of Lemon expression in sexual animals are
ore sensitive to HU than other interstitial cells. For

xample, in animals treated for 1 day with HU, expression
n testes disappeared while expression was still seen in body
olumn interstitial cells (compare Figs. 6G and 6H). A
imilar phenomenon was seen in sexual females treated for
days with HU (compare Figs. 6E and 6F). Additionally, in

he region of the body column of untreated animals where
he interstitial cell density is low or where interstitial cells
re not present, Lemon expression is reduced or absent. For
xample, Lemon expression is absent in the region of the
ody column which is depleted of interstitial cells by the
rocess of oogenesis (Fig. 5N). Taken together, these results
ndicate that Lemon is predominantly expressed in intersti-
ial cells.

In sexual male polyps, Lemon transcriptional up-
egulation occurs in patches of sperm-restricted interstitial
ells located in the body column. These interstitial cells,
hich accumulate concurrently with Lemon transcrip-

ional up-regulation, mark the initial formation of the testis
Fig. 5F). During spermatogenesis, the Lemon expression
attern changes as the transcript disappears from the center
f the aggregating mass of interstitial cells and becomes
radually restricted to a thin ring around the basal periphery
f the mature testis (Fig. 5G–I). Previous descriptions of the
rchitecture within the testis (Brien and Reniers-Decoen,
950) were insufficient to explain this Lemon expression
attern. To resolve this problem, sexual male polyps were

FIG. 6. Effect of hydroxyurea (HU) treatment on Lemon-expressin
HU for 3 days. (C) Stage 3 bud on an untreated polyp. (D) Stage 5 b
polyp. (F) Sexual female polyp treated with HU for 3 days. (G) Unt
day.
FIG. 7. In situ hybridization analysis of Lemon expression in cel
ontaining developing oocytes. (A) Epithelial cells from the body co
n the left in B), but a subset of smaller spermatogonia (cells on the
o not. During oogenesis, Lemon is up-regulated in aggregating int

see text for explanation). Bars represent 20 mm.

Copyright © 2000 by Academic Press. All right
ulse labeled with BrdU to identify cycling cells and stained
ith toluidine blue to visualize interstitial cell types
ithin the testis. We found that as the testis develops,
roliferating cells gradually become restricted to the periph-
ry of the structure. In a mature testis, the spermatogonia,
hich are proliferating cells, are located adjacent to the

urrounding ectodermal cells in a basal ring (Fig. 5P). This
attern is identical to the Lemon expression pattern, sup-
orting the idea that expression of Lemon mRNA is corre-
ated with proliferation in the spermatogenic lineage.

In order to identify specific cell types that express Lemon
uring spermatogenesis, in situ hybridizations were per-
ormed on cells from dissected, macerated testes. Within
he testis, Lemon RNA was detected in large interstitial
ells (Fig. 7B) and a subset of small interstitial cells, but was
ndetectable in the epithelial cells (Fig. 7A) and the major-
ty of small interstitial cells, spermatids, and sperm (Figs.
B and 7C). This expression pattern is consistent with the
hole-mount in situ hybridization data and with previous
ata that defined which cells in the spermatogenic lineage
roliferate (Munck and David, 1985).
Whole-mount in situ hybridization indicates that Lemon

ranscriptional up-regulation occurs during oogenesis in
atches of accumulating interstitial cells similar to those
een during spermatogenesis (Fig. 5J). However, during
ogenesis these patches grow in size until most of the body
olumn is intensely stained (Figs. 5K and 5L). During
ogenesis, thousands of interstitial cells accumulate and
roliferate (Honegger, 1981; Tardent, 1985). One cell lo-
ated near the center of the accumulation is selected to be
he oocyte while all others differentiate into nurse cells and
re phagocytosed by the growing oocyte (Honegger, 1981).
In situ hybridizations done on sexual female polyps

onfirm that Lemon transcription is up-regulated in the
ccumulating interstitial cells (Fig. 7D). Because the single
ocyte cell is morphologically indistinguishable from the
housands of nurse cells during this early stage of female
ametogenesis, we were unable to determine if the level of
emon RNA drops in the differentiating oocyte. The Lemon
NA level in nurse cells does, however, drop shortly after
urse cells are transformed into apoptotic bodies and phago-
ytosed by the oocyte (Fig. 5M). After the oocyte is exter-
alized, there is a temporary void of interstitial cells in the
egion of the body column where the oocyte was produced.
emon-expressing cells are absent from this region (Fig.

s. (A) Untreated nonsexual polyp. (B) Nonsexual polyp treated with
n a polyp treated with HU for 3 days. (E) Untreated sexual female
d sexual male polyp. (H) Sexual male polyp treated with HU for 1

m dissected and macerated testes and regions of the body column
of a sexual male polyp. Larger spermatogonia express Lemon (cells
in B) as well as smaller differentiating sperm precursors (C, arrow)

ial cells (D), all but one of which will differentiate into nurse cells
g cell
ud o
reate

ls fro
lumn
right
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295Expression of Lemon during Gametogenesis in Hydra
5N), which adds support to our results with HU-treated
animals demonstrating that Lemon expression in the body
column is restricted to interstitial cells.

DISCUSSION

Phylogenetic analysis strongly supports the hypothesis
that Lemon is orthologous to Drosophila Dtrk, chicken Klg,
nd human CCK-4 and thus places the origin of this family
f unusual RTKs at a point deep in the metazoan radiation.
he members of the family share three distinguishing

eatures. First, their extracellular domains contain only
mmunoglobulin-like repeats; second, their transmembrane
omains are highly conserved, a feature which is so far
nique among RTKs; and third, their kinase domains have
lterations in the highly conserved DFG motif. The aspar-
ate of this motif, which is located within the active site,
unctions in the chelation of Mg21 during phosphotransfer

and has been shown to be essential for kinase activity
(Moran et al., 1988; Taylor et al., 1993; van der Geer et al.,
994). Dimerization of RTKs brings one catalytic domain in
lose proximity to another, resulting in trans-
hosphorylation. Residues important for ATP binding hold
he ATP–Mg21 complex near the active site while the
spartate of the DFG motif orients the complex for phos-
hotransfer (Taylor et al., 1993). Another aspartate residue
ithin the active site serves as the catalytic base. Most
ther conserved residues are believed to be involved in
ubstrate recognition or to serve structural roles (reviewed
n van der Geer et al., 1994). Since Lemon, Klg, CCK-4, and
trk have alterations in a motif that is known to be

ssential for kinase activity, we hypothesized that the
ignal transduction mechanism of these orthologues is
typical. In support of this idea, kinase activity could not be
etected in Lemon, CCK-4, and Klg (Chou and Hayman,
991; Mossie et al., 1995). In contrast, an immunoprecipi-
ate of Drosophila Dtrk was capable of phosphorylation
Pulido et al., 1992); however, the possibility that this
ctivity was due to a coprecipitating kinase was not ruled
ut. Although one could argue that the substrate specifici-
ies of Lemon, Klg, and CCK-4 are peculiar and therefore

not easily assayed, our present knowledge of RTKs argues
against this hypothesis since all known catalytically active
RTKs recognize themselves as substrates.

We speculate that Lemon is a component of an unusual
RTK signal transduction mechanism involving the forma-
tion of a complex which is regulated, in part, by transmem-
brane domain interactions. This hypothetical complex
would consist of a kinase-inactive receptor and an uniden-
tified RTK possessing protein-tyrosine kinase activity. A
similar mechanism has been demonstrated for the verte-
brate RTK ErbB3, which lacks or has a very low level of
protein-tyrosine kinase activity (Guy et al., 1994). ErbB3
forms heterodimers with other members of the epidermal
growth factor receptor family like EGFR and ErbB2 (re-

viewed in Riese and Stern, 1998). These heterodimers have a

Copyright © 2000 by Academic Press. All right
ifferent signaling capabilities relative to EGFR and ErbB2
omodimers (Alimandi et al., 1995; Fedi et al., 1994).
This heterodimerization hypothesis is supported by sev-

ral observations and results. Lemon, Klg, and CCK-4 are
rthologues that do not possess catalytic activity, suggest-
ng that this activity was lost before cnidarians split from
he common ancestor. Despite this loss of enzymatic activ-
ty, their kinase domains have remained relatively con-
erved, conservation that may be necessary to facilitate an
nteraction with another protein-tyrosine kinase domain.

e speculate that there has not been selection for Lemon
atalytic activity during cnidarian evolution and hence, the
bsence of kinase activity is no longer due only to a single
hange in the amino acid sequence. In keeping with this
otion, conversion of the FLS motif to its ancestral DFG
equence was not sufficient to restore kinase activity.
The highly conserved transmembrane sequence of Lemon

nd its orthologues suggests that this sequence plays an
mportant role in the function of these proteins. We have
howed that the Lemon transmembrane sequence contains
destabilizing determinant when expressed in yeast. Trans-
embrane sequences have been shown to play roles in the

ssembly of membrane protein complexes (Blum et al.,
993; Bonifacino et al., 1990a,b; Cosson and Bonifacino,
992; Harrison et al., 1995; Hennecke and Cosson, 1993),
nd in at least some cases failure of the transmembrane
equence to interact with its binding partner leads to rapid
egradation of the protein in the endoplasmic reticulum
Bonifacino et al., 1990a,b). It is possible that the effect of
he Lemon transmembrane sequence on protein stability is
chieved through a similar mechanism.
Interestingly, the amino acid sequence motifs present in

he transmembrane domains of Lemon and its orthologues
re very similar to the motifs present in the transmembrane
omain of glycophorin A, a prominent glycoprotein in
uman erythrocyte membranes which forms noncovalent
omodimers mediated by specific sequences within its
ransmembrane domain (Engelman et al., 1995; Fleming et
l., 1997; Lemmon et al., 1992; MacKenzie et al., 1997).
nother Hydra RTK, HTK54 (Entrez No. AAA65223), pos-

esses related motifs in its transmembrane domain, raising
he possibility that this protein forms a complex with
emon which is mediated by transmembrane sequence
nteractions. The expression pattern of HTK54, which is a
ydra relative of the vertebrate PDGF receptor family (Fig.
), overlaps the expression pattern of Lemon (data not
hown). Preliminary results suggest that the coexpression
f Lemon and HTK54 in yeast results in an increase in the
teady-state level of the Lemon protein (data not shown).
e are currently conducting an investigation into the

ature of this putative interaction.
Although the role of Lemon in gametogenesis is un-

nown, its expression pattern in interstitial cells suggests
t least one possible function. In Hydra, gametogenesis
nitiates as sperm- or egg-restricted interstitial cells accu-

ulate in localized regions of the body column. Prior to this

ccumulation, these cells proliferate slowly, going through

s of reproduction in any form reserved.
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296 Miller and Steele
S-phase every 3 to 4 days (Holstein and David, 1990;
Littlefield, 1991; Littlefield et al., 1991). However, sperm-
restricted interstitial cells enter S phase every 16 to 24 h
during spermatogenesis (Munck and David, 1985). Egg-
restricted interstitial cells proliferate at similar rates during
oogenesis based on their rapid incorporation of BrdU and
elimination with HU, but accurate labeling analyses are
difficult because there are no antibodies that distinguish
egg-restricted interstitial cells from other interstitial cell
types. Lemon transcriptional up-regulation during sper-
matogenesis and oogenesis occurs early, when sperm- or
egg-restricted interstitial cells initially accumulate. Whole-
mount BrdU labeling indicates that these initial accumula-
tions consist of rapidly proliferating interstitial cells
(Miller, unpublished observations). Thus, Lemon transcrip-
tional up-regulation occurs concurrent with an increase in
the proliferation rates of sperm- or egg-restricted interstitial
cells early in gametogenesis. In addition, interstitial cells
up-regulating Lemon transcription during budding have
ltered cell cycle parameters relative to interstitial cells
own-regulating Lemon transcription in the budding zone
f the parent polyp (data not shown). These correlations
uggest that Lemon may be involved in modulating the cell
ycle of interstitial cells.
CCK-4, the human orthologue of Lemon, was originally

dentified as a gene expressed in primary colon carcinoma
issue (Mossie et al., 1995). CCK-4 is not expressed in
ormal adult colon, and its expression was found to be
levated in 9 of 15 colon carcinoma cell lines (Mossie et al.,
995). Interestingly, high levels of expression of the murine
rthologue of CCK-4 are seen in fetal mouse colon (Mossie
t al., 1995). CCK-4 (in this case termed PTK7) is also
xpressed in normal melanocytes, but expression was either
ecreased or absent in advanced melanomas (Easty et al.,
997). Why expression of CCK-4 is elevated in one type of
umor and suppressed in another type is unclear. These data
ndicate, however, that it will be of interest to examine in

ore detail the members of this unusual family of RTKs.
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